1

i

1998 GEMINI SITE TESTING CAMPAIGN Cerro Pachón and Cerro Tololo

VERNIN Jean, AGABI Abdelkrim, AVILA Remy AZOUIT Max, CONAN Rodolphe, MARTIN Francis MASCIADRI Elena, SANCHEZ Leonardo, ZIAD Aziz

January 21, 2000

¹Thanks to Pablo BLAYER and to Bernhard LOPEZ who launched many balloons and help us in many circumstances.

Contents

IN	ITRO	ODUCTION	1
1	INS	STRUMENTAL METHODS	3
	1.1	Review	. 3
	1.2	Definition of atmospheric slabs	. 5
	1.3	Scidar	. 6
		1.3.1 Principle of the Generalized Scidar (GS)	. 6
		1.3.2 Simultaneous measurement of $C_N^2(h)$ and $\mathbf{V}(h)$ from double	
		star scintillation	. 7
		1.3.3 Simultaneous measurement of $C_N^2(h)$ and $\mathbf{V}(h)$ from single	
		star scintillation	. 11
	1.4	Generalized Seeing Monitor (GSM)	. 11
		1.4.1 GSM instrument	. 11
		1.4.2 Data acquisition and reduction	. 12
	1.5	Instrumented Balloons and Mast	. 16
		1.5.1 Balloon sounding	. 16
		1.5.2 Instrumented meteorological mast	. 17
2	OB	SERVING CAMPAIGN	18
	2.1	Geographical installation	. 18
	2.2	Time schedule	. 18
3	INI	DIVIDUAL RESULTS	21
	3.1	G–Scidar	. 21
		3.1.1 Nightly observation	. 22
		3.1.2 Statistics over each one-week run	. 33
		3.1.3 All run statistics	. 50
	3.2	GSM	. 54
		3.2.1 Data Analysis	. 54
		3.2.2 Night-by-night results	. 54
	3.3	Balloon	. 56
		3.3.1 Nightly observation	. 60
		3.3.2 Statistics over each one-week run	. 61
		3.3.3 All year statistics	. 66
	3.4	Mast	. 67
		3.4.1 Nightly observations	. 67

4	DIS	CUSSION	71
	4.1	G–Scidar results	71
	4.2	G-Scidar/Balloon for $C_N^2(h)$ profiles	74
		4.2.1 Detailed Run 1. January 98	74
		4.2.2 Detailed run 2. April 98	79
		4.2.3 Detailed run 3. July 98	81
		4.2.4 Detailed run 4. October 98	84
		4.2.5 Summary of each run and whole year	88
	4.3	G-Scidar/Balloon integrated parameters: θ, τ	93
	4.4	G–Scidar/GSM/Balloon comparison during last run, October 1998	95
5	CO	NCLUSION	97
0	51	Instruments: methods coherence reliability	97
	5.2	Scientific conclusions	98
	5.3	Acknowledgments	101
	0.0		
6	BIE	BLIOGRAPHY	102
_			
7	AN	NEX	106
7	AN 7.1	NEX SCIDAR	106 106
7	AN 7.1	NEX Image: SCIDAR Image: SCIDAR	106 106 106
7	AN 7.1	NEX Image: SCIDAR	106 106 106 133
7	AN 7.1	NEX : SCIDAR : 7.1.1 RUN 1 : 7.1.2 RUN 2 : 7.1.3 RUN 3 :	106 106 106 133 141
7	AN 7.1	NEX Image: SCIDAR	106 106 133 141 164
7	AN 7.1 7.2	NEX : SCIDAR : 7.1.1 RUN 1 : 7.1.2 RUN 2 : 7.1.3 RUN 3 : 7.1.4 RUN 4 : BALLOONS : :	106 106 133 141 164 194
7	AN 7.1 7.2 7.3	NEX Image: SCIDAR	106 106 133 141 164 194 247
7	AN 7.1 7.2 7.3	NEX Image: SCIDAR	106 106 133 141 164 194 247 247
7	AN 7.1 7.2 7.3	NEX : SCIDAR : 7.1.1 RUN 1 7.1.2 RUN 2 7.1.3 RUN 3 7.1.4 RUN 4 BALLOONS : GSM : 7.3.1 Night of 03/04 October 1998 : 7.3.2 Night of 04/05	106 106 133 141 164 194 247 247 248
7	AN 7.1 7.2 7.3	NEX Image: SCIDAR	106 106 133 141 164 247 247 248 249
7	AN 7.1 7.2 7.3	NEX : SCIDAR : 7.1.1 RUN 1 : : 7.1.2 RUN 2 : : 7.1.3 RUN 3 : : 7.1.4 RUN 4 : : BALLOONS : : : 7.3.1 Night of 03/04 October 1998 : 7.3.2 Night of 04/05 October 1998 : 7.3.3 Night of 05/06 October 1998 : 7.3.4 Night of 06/07 October 1998 :	106 106 133 141 164 194 247 247 248 249 250
7	AN 7.1 7.2 7.3	NEX : SCIDAR : 7.1.1 RUN 1 7.1.2 RUN 2 7.1.3 RUN 3 7.1.4 RUN 4 8ALLOONS : 7.3.1 Night of 03/04 October 1998 : 7.3.2 Night of 04/05 October 1998 : 7.3.4 Night of 06/07 October 1998 : 7.3.5 Night of 07/08	106 106 106 133 141 164 247 247 247 248 249 250 251
7	AN 7.1 7.2 7.3	NEX : SCIDAR : 7.1.1 RUN 1 : : 7.1.2 RUN 2 : : 7.1.3 RUN 3 : : 7.1.4 RUN 4 : : 8ALLOONS : : : 7.3.1 Night of 03/04 October 1998 : 7.3.2 Night of 04/05 October 1998 : 7.3.3 Night of 05/06 October 1998 : 7.3.4 Night of 06/07 October 1998 : 7.3.5 Night of 07/08 October 1998 : 7.3.6 Night of 08/09 October 1998 :	106 106 106 133 141 164 194 247 247 247 248 249 250 251 252

FIGURE 7.141: Temporal evolution of the optical turbulence .

FIGURE 7.142: Temporal evolution of the seeing. Red: Boundary layer (first km); Blue: Free atmosphere (above 1km); Black: Total.

FIGURE 7.143: Temporal evolution of the isoplanatic. Black: Adaptive optics, red: speckle interferometry.

FIGURE 7.144: Temporal evolution of the equivalent speed. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.145: Temporal evolution of the coherence time. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.146: Temporal evolution of the "cone effect" d_0 . Processing D, dome seeing removed.

FIGURE 7.147: Temporal evolution of h_{opt} in red, h_{dm} in green and h_{eq} in black. Processing D, dome seeing removed.

FIGURE 7.148: Temporal evolution of the optical turbulence .

FIGURE 7.149: Temporal evolution of the seeing. Red: Boundary layer (first km); Blue: Free atmosphere (above 1km); Black: Total.

FIGURE 7.150: Temporal evolution of the isoplanatic. Black: Adaptive optics, red: speckle interferometry.

FIGURE 7.151: Temporal evolution of the equivalent speed. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.152: Temporal evolution of the coherence time. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.153: Temporal evolution of the "cone effect" d_0 . Processing D, dome seeing removed.

FIGURE 7.154: Temporal evolution of h_{opt} in red, h_{dm} in green and h_{eq} in black. Processing D, dome seeing removed.

FIGURE 7.155: Temporal evolution of the optical turbulence .

FIGURE 7.156: Temporal evolution of the seeing. Red: Boundary layer (first km); Blue: Free atmosphere (above 1km); Black: Total.

FIGURE 7.157: Temporal evolution of the isoplanatic. Black: Adaptive optics, red: speckle interferometry.

FIGURE 7.158: Temporal evolution of the equivalent speed. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.159: Temporal evolution of the coherence time. Black: for adaptive optics; Red: for speckle interferometry.

FIGURE 7.160: Temporal evolution of the "cone effect" d_0 . Processing D, dome seeing removed.

FIGURE 7.161: Temporal evolution of h_{opt} in red, h_{dm} in green and h_{eq} in black. Processing D, dome seeing removed.

7.2 BALLOONS

Here are presented the details of all the balloon flights.

FIGURE 7.162: Résumé of flight 116.

FIGURE 7.163: Résumé of flight 117.

FIGURE 7.164: Résumé of flight 118.

FIGURE 7.165: Résumé of flight 119.

FIGURE 7.166: Résumé of flight 120.

FIGURE 7.167: Résumé of flight 121.

FIGURE 7.168: Résumé of flight 122.

FIGURE 7.169: Résumé of flight 123.

FIGURE 7.170: Résumé of flight 124.

FIGURE 7.171: Résumé of flight 125.

FIGURE 7.172: Résumé of flight 126.

FIGURE 7.173: Résumé of flight 127.

FIGURE 7.174: Résumé of flight 128.

FIGURE 7.175: Résumé of flight 129.

FIGURE 7.176: Résumé of flight 130.

FIGURE 7.177: Résumé of flight 131.

FIGURE 7.178: Résumé of flight 132.

FIGURE 7.179: Résumé of flight 133.

FIGURE 7.180: Résumé of flight 134.

FIGURE 7.181: Résumé of flight 135.

FIGURE 7.182: Résumé of flight 136.

FIGURE 7.183: Résumé of flight 137.

FIGURE 7.184: Résumé of flight 138.

FIGURE 7.185: Résumé of flight 139.

FIGURE 7.186: Résumé of flight 140.

FIGURE 7.187: Résumé of flight 141.

FIGURE 7.188: Résumé of flight 142.

FIGURE 7.189: Résumé of flight 143.

FIGURE 7.190: Résumé of flight 144.

FIGURE 7.191: Résumé of flight 145.

N. B. : channel (0.95m;H)not avalable

FIGURE 7.192: Résumé of flight 146.

FIGURE 7.193: Résumé of flight 147.

N. B. : channel (0.95m;H)not avalable

FIGURE 7.194: Résumé of flight 148.

FIGURE 7.195: Résumé of flight 149.

FIGURE 7.196: Résumé of flight 150.

N. B. : channel (0.95m;H)not avalable

FIGURE 7.197: Résumé of flight 151.

FIGURE 7.198: Résumé of flight 152.

FIGURE 7.199: Résumé of flight 153.

FIGURE 7.200: Résumé of flight 154.

FIGURE 7.201: Résumé of flight 154.

FIGURE 7.202: Résumé of flight 155.

FIGURE 7.203: Résumé of flight 156.

FIGURE 7.204: Résumé of flight 157.

FIGURE 7.205: Résumé of flight 158.

FIGURE 7.206: Résumé of flight 159.

FIGURE 7.207: Résumé of flight 160.

FIGURE 7.208: Résumé of flight 161.

FIGURE 7.209: Résumé of flight 162.

FIGURE 7.210: Résumé of flight 163.

FIGURE 7.211: Résumé of flight 164.

FIGURE 7.212: Résumé of flight 165.

7.3 GSM

7.3.1 Night of 03/04 October 1998

Parameter	Median value
ϵ_0 (as)	0.83 ± 0.10
\mathcal{L}_0 (m)	19.1 ± 9.9
$\theta_0 \ (as)$	2.75 ± 0.52
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	1.24 ± 0.39

7.3.2 Night of 04/05 October 1998

Parameter	Median value
$\epsilon_0 (as)$	0.88 ± 0.14
$\mathcal{L}_0 (\mathrm{m})$	33.3 ± 17.8
θ_0 (as)	2.79 ± 0.76
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	1.21 ± 0.49

10-05-98 100 (آ ي د 50 ** 0 8.0 (as) ω 8.0 0.4 $\theta_0 (as)$ 2∟ 24 10 Data 25 26 27 28 29 30 31 32 3**3**8 20 UT

7.3.3 Night of 05/06 October 1998

Parameter	Median value
$\epsilon_0 (as)$	0.59 ± 0.13
$\mathcal{L}_0 (\mathrm{m})$	20.3 ± 14.7
θ_0 (as)	3.83 ± 0.61
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	0.71 ± 0.25

7.3.4 Night of 06/07 October 1998

Parameter	Median value
$\epsilon_0 (as)$	0.75 ± 0.16
$\mathcal{L}_0 (\mathrm{m})$	22.5 ± 15.2
θ_0 (as)	2.91 ± 0.44
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	1.13 ± 0.39
7.3.5 Night of 07/08 October 1998

Parameter	Median value
ϵ_0 (as)	0.74 ± 0.13
\mathcal{L}_{0} (m)	20.5 ± 12.3
θ_0 (as)	4.11 ± 0.59
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	0.64 ± 0.24

7.3.6 Night of 08/09 October 1998

Parameter	Median value
ϵ_0 (as)	0.91 ± 0.25
\mathcal{L}_0 (m)	46.2 ± 64.0
$\theta_0 \ (as)$	2.06 ± 0.52
$\frac{\sigma_I^2}{\langle I \rangle^2} (\%)$	2.01 ± 1.71

7.3.7 Night of 09/10 October 1998

Parameter	Median value
$\epsilon_0 (as)$	1.96 ± 0.44
$\mathcal{L}_0 (\mathrm{m})$	45.2 ± 38.1
θ_0 (as)	1.35 ± 0.29
$\frac{\sigma_I^2}{\langle I \rangle^2} $ (%)	4.09 ± 1.36