Wave-front control and simulation for ExAOC

Lisa A. Poyneer and Jean-Pierre Véran

ExAOC Midterm Review October 21-22, 2004 Victoria, BC, Canada

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Where were we last spring?

- *Optimal modal control with VMM works in Altair, but much too expensive for ExAOC*
- *Fourier Transform Reconstruction (FTR) algorithm efficient enough for ExAOC and validated, but not adaptive to operating conditions*

What have we done?

- We've combined the best of both methods, with a couple of bonuses
- We have a detailed end-to-end simulation of the AO system to contribute to system design and performance analysis

- Modal set is the Fourier basis. This works even on an arbitrary aperture.
 - *We can create a 'modal' filter customized to the AO system*
- Reconstruction at each time step is with FTR.
- Closed-loop modal coefficients are used to estimate optimal gains for control law for each mode. Gains are implemented as a filter.
- Somputationally feasible for 64x64 ExAO right now.
- 🖗 Extra benefits include
 - Solution Modal coefficients are *available for free*, unlike matrix-based modal control, which requires extra computation.
 - *For the second second second second second second and the structure and the structure.*

Modal grid for 8 x 8 case

- We only just over half of the pairs [k,l] due to Hermitian symmetry.
- We index the modes from piston to waffle
- All filters will be Hermitian

- Fourier basis in an arbitrary aperture is a tight Frame that allows analysis and synthesis like an ONB.
- If we window the data, we can use a fast DFT to get modal coefficients.
- New method of slope management called edge correction ensures high-quality coefficient estimation by making outside region of phase flat.
- Result we get the modal coefficients for free at each time step in the FTR process.

- We follow Altair's implementation and assume an approximate model of control system (exact in simulation case) for each of the independent modes.
- We control a mode with feedback in the presence of noise.

Block diagram of control loop for a modal coefficient

Optimize for the minimum squaredresidual error

- Since the noise at any step is independent of past errors, if we minimize on the measurement s, we minimize on the residual error.
- If we had perfect knowledge we would minimize

$$\mathcal{J} = \int \left| \frac{1}{1 + \exp(-j\omega)H(\omega)} \right|^2 \left[M(\omega) + N(\omega) \right] \, d\omega$$

But we don't... so we have to estimate the open-loop PSD from the closed-loop measurements using

$$\hat{M}(\omega) + \hat{N}(\omega) = \left|1 + \exp(-j\omega)H_0(\omega)\right|^2 \hat{S}(\omega)$$

- From closed-loop telemetry, we estimate the closed-loop measurement PSDs
- Convert these to open-loop PSD estimates
- Find the control law which minimizes the error for the sine and cosine modes together

$$\operatorname{argmin} H(z) \left\{ \int \left| \frac{1}{1 + \exp(-j\omega)H(\omega)} \right|^2 \left| 1 + \exp(-j\omega)H_0(\omega) \right|^2 \left[\hat{S}_S(\omega) + \hat{S}_C(\omega) \right] d\omega \right\}$$

Where our control law is simple: $H(z) = \frac{g}{1 - cz^{-1}}$

Gain estimation for FTR (2)

- For a single variable (gain g) we can solve the optimization problem efficiently.
- At each frequency [k,l] we have a gain - we construct the filter of these gains using Hermitian symmetry. This filter in then incorporated into the reconstruction filter.

Example filter, N=64

Gain optimization in incorporated into ExAOC end-to-end simulation

Features of ExAOC simulation include:

- Fourier Optics for Spatially-filtered WFS onto CCD, quadcell config
- Solution Altair-based DM model using influence functions
- \Im Input phase aberration is a very long screen shifted at 10m/s, $r_0 = 18$ cm
- *FTR reconstruction at each time step*
- Modal coefficients obtained in reconstruction stage all steps, all modes
- igsi Gain optimization every 128 x 8 time steps (as describe above)
- Full diagnostics including long-exposure PSDs and PSFs from the residual wavefront and instantaneous residual error in different spatial frequency bands
- Run either single long case to watch optimization or many short cases with a specific filter to analyze general case performance

- Given an optimal gain profile, we compare three filters
 - \Im (1) constant gain of 0.6 for all modes (2) optimized gains
 - igsi (3) constant gains with optimized for a smaller region of filter
- PSD of case (3) is almost exactly the combination of parts of the other two responses in the right places

- Given an optimal gain profile, we compare three filters

 - igsi (3) constant gains with optimized for a smaller region of filter
- PSD of case (3) is almost exactly the combination of parts of the other two responses in the right places

- Given an optimal gain profile, we compare three filters

 - igsi (3) constant gains with optimized for a smaller region of filter
- PSD of case (3) is almost exactly the combination of parts of the other two responses in the right places

Gain optimization leads to DM compensation

Data from 32x32 system run for 9 iterations of optimal gain estimation

- Hypothesis: gain estimation should compensate for Mod-Hud's lack of knowledge of DM
- Method: compare the ratio of the optimal gains for Mod-Hud and custom FTR on the same input

Optimal gains can significantly reduce residual wave-front error

- Use of optimal gains improves performance
 - significant reduction in residual MSE at each timestep
 - less variation in MSE at each timestep

N=48, NGS Mag 8 example for 8 iterations of gain optimization

Optimal gains trade-off bandwidth and measurement errors

Data for N=48, median over a set of 25 random phase screens

- At high SNRs,
 optimal gains
 produce equivalent or
 more measurement
 error but less
 temporal error than
 before
- At low SNRs, optimal gains produce less measurement error but more temporal error than before

Biggest improvement due to optimization comes at low SNRs

- For all cases, optimized gains improved performance.
 - At high SNRs, high spatial frequency bandwidth errors are reduced.
 - At low SNRs, measurement error is drastically reduced.

Data points are medians from sets of random phase screens

Gain optimization will be significant in system design

In our simulations for NGS I=8, turning on the gain optimization allows us to go to the next smaller subaperture size, which gives us a larger region of correction

	N=32	N=48, Opt	N=48	N=64, Opt
SNR	4.89	2.16	2.16	1.19
MSE	.054	.074	.224	.210
Strehl	0.86	0.87	0.75	0.75

We can significantly increase detection area while maintaining correction level.

Averaged long-exposure PSFs of many random phase screens. PSFs same color scale

Computational requirements are satisfiable today

- FTR each timestep: $15N^2 \lg N + 20N^2$
- Sestimating periodograms for t steps of telemetry:

 $N^2(4+2.5\lg t)$

Averaging the periodograms and finding the optimal gain (k is for evaluations in root-finding):

 $N^2(1+a+k)+4k$

Solution Assuming k = 10 (using fast method), a 64x64 system at 2.5k kHz has a maximum load of 1.42 GFLOPs/sec.

For an ExAOC system of 64x64 at 2.5kHz we can:

- *y* use Optimal Modal FTR to reconstruct phase and optimize all 2050 gains in filter. Possibly update as fast as every 0.5 seconds
- *Fourier Frame. key and a set of the set o*
- onumber get a significant improvement in performance on dim stars
- We have end-to-end simulations of ExAOC case
- Analysis in Altair case shows FTR performs well in comparison to Altair matrix

Remaining to be addressed in CoDR (or wait for PDR?)

Experimental tasks (MEMS issues at LAO)

- *§ affect of dead or pegged actuators*
- onumber verify response of MEMS and modal control measurement method

🖗 Theoretical tasks

- *Lisa: use complex gains for control laws or other controller?*
- *♀ J.-P.: ??*
- Submit paper on Opt. Mod. FTR for peer review