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ExAOC tasks for wave-front control

Where were we last spring?
Optimal modal control with VMM works in Altair, but much too 
expensive for ExAOC
Fourier Transform Reconstruction (FTR) algorithm efficient enough for 
ExAOC and validated, but not adaptive to operating conditions

What have we done?
We’ve combined the best of both methods, with a couple of bonuses
We have a detailed end-to-end simulation of the AO system to contribute 
to system design and performance analysis
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Optimal Modal FTR is our solution

Modal set is the Fourier basis. This works even on an 
arbitrary aperture. 

We can create a ‘modal’ filter customized to the AO system

Reconstruction at each time step is with FTR.
Closed-loop modal coefficients are used to estimate 
optimal gains for control law for each mode. Gains are 
implemented as a filter.
Computationally feasible for 64x64 ExAO right now.
Extra benefits include

Modal coefficients are available for free, unlike matrix-based modal 
control, which requires extra computation.
There is a natural relationship between filter structure and PSF structure.
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FTR works by filtering

WFS slopes

FFT

Phase
estimate

FFT-1Filter

Fix boundary
problem



Lisa A. Poyneer: 5Optimal Modal FTR

Modal numbering convention

We only just over half of 
the pairs [k,l] due to 
Hermitian symmetry. 
We index the modes from 
piston to waffle
All filters will be 
Hermitian
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We can do all this with an aperture

Fourier basis in an arbitrary aperture is a tight Frame that 
allows analysis and synthesis like an ONB.
If we window the data, we can use a fast DFT to get 
modal coefficients.
New method of slope management called edge 
correction ensures high-quality coefficient estimation by 
making outside region of phase flat.

Result - we get the modal coefficients for free at each 
time step in the FTR process.



7Lisa A. Poyneer: Optimal Modal FTR

Optimal modal control scheme

We follow Altair’s 
implementation and 
assume an approximate 
model of control system 
(exact in simulation case) 
for each of the 
independent modes.
We control a mode with 
feedback in the presence 
of noise.
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Block diagram of control 
loop for a modal coefficient
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Optimize for the minimum squared-
residual error

Since the noise at any step is independent of past errors, 
if we minimize on the measurement s, we minimize on 
the residual error.
If we had perfect knowledge we would minimize

But we don’t... so we have to estimate the open-loop PSD 
from the closed-loop measurements using

J =

∫ ∣∣∣∣ 1

1 + exp(−jω)H(ω)

∣∣∣∣
2

[M(ω) + N(ω)] dω

M̂(ω) + N̂(ω) = |1 + exp(−jω)H0(ω)|2 Ŝ(ω)
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Gain estimation for FTR (1)

From closed-loop telemetry, we estimate the closed-loop 
measurement PSDs
Convert these to open-loop PSD estimates
Find the control law which minimizes the error for the 
sine and cosine modes together

Where our control law is simple:

argminH(z)

{∫ ∣∣∣∣ 1

1 + exp(−jω)H(ω)

∣∣∣∣
2

|1 + exp(−jω)H0(ω)|2
[
ŜS(ω) + ŜC(ω)

]
dω

}

H(z) =
g

1 − cz−1



10Lisa A. Poyneer: Optimal Modal FTR

Gain estimation for FTR (2)

For a single variable   
(gain g) we can solve the 
optimization problem 
efficiently.
At each frequency [k,l] we 
have a gain - we construct 
the filter of these gains 
using Hermitian 
symmetry. This filter in 
then incorporated into the 
reconstruction filter. Example filter, N=64

Wind direction
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Gain optimization integrates into filter

WFS slopes

FFT

Phase
estimate

FFT-1Filter

Fix boundary
problem Modal

coefficientsOptimal
gains

Gain
optimizer
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Gain optimization in incorporated into 
ExAOC end-to-end simulation

Features of ExAOC simulation include:
Fourier Optics for Spatially-filtered WFS onto CCD, quadcell config
Altair-based DM model using influence functions
Input phase aberration is a very long screen shifted at 10m/s, r0 = 18 cm

FTR reconstruction at each time step
Modal coefficients obtained in reconstruction stage all steps, all modes
Gain optimization every 128 x 8 time steps (as describe above)
Full diagnostics including long-exposure PSDs and PSFs from the 
residual wavefront and instantaneous residual error in different spatial 
frequency bands
Run either single long case to watch optimization or many short cases 
with a specific filter to analyze general case performance



Lisa A. Poyneer: 13Optimal Modal FTR

We can control modes independently

Given an optimal gain profile, we compare three filters
(1) constant gain of 0.6 for all modes (2) optimized gains
(3) constant gains with optimized for a smaller region of filter

PSD of case (3) is almost exactly the combination of parts 
of the other two responses in the right places

Constant Mix Optimal
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Gain optimization leads to DM 
compensation

Hypothesis: gain 
estimation should 
compensate for Mod-
Hud’s lack of 
knowledge of DM
Method: compare the 
ratio of the optimal 
gains for Mod-Hud 
and custom FTR on 
the same input

Data from 32x32 system run for 9 iterations 
of optimal gain estimation
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Optimal gains can significantly reduce 
residual wave-front error

Use of optimal gains 
improves 
performance

significant reduction in 
residual MSE at each 
timestep
less variation in MSE at 
each timestep

N=48, NGS Mag 8 example for 8 iterations 
of gain optimization
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Optimal gains trade-off bandwidth and 
measurement errors

At high SNRs, 
optimal gains 
produce equivalent or 
more measurement 
error but less 
temporal error than 
before
At low SNRs, optimal 
gains produce less 
measurement error 
but more temporal 
error than before

Data for N=48, median over a set
of 25 random phase screens
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Biggest improvement due to 
optimization comes at low SNRs

For all cases, 
optimized gains 
improved 
performance.

At high SNRs, high 
spatial frequency 
bandwidth errors are 
reduced.
At low SNRs, 
measurement error is 
drastically reduced.

Data points are medians from sets
of random phase screens



Lisa A. Poyneer: 18Optimal Modal FTR

Gain optimization will be significant in 
system design

In our simulations for NGS I=8, turning on the gain 
optimization allows us to go to the next smaller 
subaperture size, which gives us a larger region of 
correction

N=32 N=48, Opt N=48 N=64, Opt

SNR 4.89 2.16 2.16 1.19

MSE .054 .074 .224 .210

Strehl 0.86 0.87 0.75 0.75
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N=32 constant gain ~= N=48 optimized

We can significantly increase detection area while 
maintaining correction level.

Averaged long-exposure PSFs of many random
phase screens. PSFs same color scale
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Computational requirements are 
satisfiable today

FTR each timestep:
Estimating periodograms for t steps of telemetry:

Averaging the periodograms and finding the optimal 
gain (k is for evaluations in root-finding):

Assuming k = 10 (using fast method), a 64x64 system at 
2.5k kHz has a maximum load of 1.42 GFLOPs/sec.

15N
2 lg N + 20N

2

N
2(1 + a + k) + 4k

N
2(4 + 2.5 lg t)
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Optimal Modal FTR is our solution

For an ExAOC system of 64x64 at 2.5kHz we can:
use Optimal Modal FTR to reconstruct phase and optimize all 2050 
gains in filter. Possibly update as fast as every 0.5 seconds
have nearly independent control of spatial locations in the PSF due to 
Fourier Frame.
get a significant improvement in performance on dim stars 

We have end-to-end simulations of ExAOC case
Analysis in Altair case shows FTR performs well in 
comparison to Altair matrix
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Remaining to be addressed 
in CoDR (or wait for PDR?)

Experimental tasks (MEMS issues at LAO)
how to control actuators at the edge - most important issue
affect of dead or pegged actuators
verify response of MEMS and modal control measurement method

Theoretical tasks
Lisa: use complex gains for control laws or other controller?
J.-P.: ??
Submit paper on Opt. Mod. FTR for peer review


